Source Code
Overview
ETH Balance
0 ETH
ETH Value
$0.00| Transaction Hash |
|
Block
|
From
|
To
|
|||||
|---|---|---|---|---|---|---|---|---|---|
Latest 1 internal transaction
Advanced mode:
| Parent Transaction Hash | Block | From | To | |||
|---|---|---|---|---|---|---|
| 3717894 | 343 days ago | Contract Creation | 0 ETH |
Cross-Chain Transactions
Loading...
Loading
Contract Name:
RateLimitMidpointCommonLibrary
Compiler Version
v0.8.27+commit.40a35a09
Optimization Enabled:
Yes with 200 runs
Other Settings:
cancun EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: BSD-3.0
pragma solidity >=0.8.19 <0.9.0;
import {Math} from "@openzeppelin5/contracts/utils/math/Math.sol";
/// @notice two rate storage slots per rate limit
struct RateLimitMidPoint {
//// -------------------------------------------- ////
//// ------------------ SLOT 0 ------------------ ////
//// -------------------------------------------- ////
/// @notice the rate per second for this contract
uint128 rateLimitPerSecond;
/// @notice the cap of the buffer that can be used at once
uint112 bufferCap;
//// -------------------------------------------- ////
//// ------------------ SLOT 1 ------------------ ////
//// -------------------------------------------- ////
/// @notice the last time the buffer was used by the contract
uint32 lastBufferUsedTime;
/// @notice the buffer at the timestamp of lastBufferUsedTime
uint112 bufferStored;
/// @notice the mid point of the buffer
uint112 midPoint;
}
/// @title abstract contract for putting a rate limit on how fast a contract
/// can perform an action e.g. Minting
/// @author Elliot Friedman
/// @dev Modified lightly from Zelt at commit 30b2ba0 to update the Solidity Compiler version used
/// Can refer to: (https://github.com/solidity-labs-io/zelt/blob/30b2ba0352422471c03b233d55feddfbdba198a3/src/lib/RateLimitMidpointCommonLibrary.sol)
library RateLimitMidpointCommonLibrary {
/// @notice event emitted when buffer cap is updated
event BufferCapUpdate(uint256 oldBufferCap, uint256 newBufferCap);
/// @notice event emitted when rate limit per second is updated
event RateLimitPerSecondUpdate(uint256 oldRateLimitPerSecond, uint256 newRateLimitPerSecond);
/// @notice the amount of action available before hitting the rate limit
/// @dev replenishes at rateLimitPerSecond per second back to midPoint
/// @param limit pointer to the rate limit object
function buffer(RateLimitMidPoint storage limit) public view returns (uint256) {
uint256 elapsed;
unchecked {
elapsed = uint32(block.timestamp) - limit.lastBufferUsedTime;
}
uint256 accrued = uint256(limit.rateLimitPerSecond) * elapsed;
if (limit.bufferStored < limit.midPoint) {
return Math.min(uint256(limit.bufferStored) + accrued, uint256(limit.midPoint));
} else if (limit.bufferStored > limit.midPoint) {
/// past midpoint so subtract accrued off bufferStored back down to midpoint
/// second part of if statement will not be evaluated if first part is true
if (accrued > limit.bufferStored || limit.bufferStored - accrued < limit.midPoint) {
/// if accrued is more than buffer stored, subtracting will underflow,
/// and we are at the midpoint, so return that
return limit.midPoint;
} else {
return limit.bufferStored - accrued;
}
} else {
/// no change
return limit.bufferStored;
}
}
/// @notice syncs the buffer to the current time
/// @dev should be called before any action that
/// updates buffer cap or rate limit per second
/// @param limit pointer to the rate limit object
function sync(RateLimitMidPoint storage limit) internal {
uint112 newBuffer = uint112(buffer(limit));
uint32 blockTimestamp = uint32(block.timestamp);
limit.lastBufferUsedTime = blockTimestamp;
limit.bufferStored = newBuffer;
}
/// @notice set the rate limit per second
/// @param limit pointer to the rate limit object
/// @param newRateLimitPerSecond the new rate limit per second
function setRateLimitPerSecond(RateLimitMidPoint storage limit, uint128 newRateLimitPerSecond) internal {
sync(limit);
uint256 oldRateLimitPerSecond = limit.rateLimitPerSecond;
limit.rateLimitPerSecond = newRateLimitPerSecond;
emit RateLimitPerSecondUpdate(oldRateLimitPerSecond, newRateLimitPerSecond);
}
/// @notice set the buffer cap, but first sync to accrue all rate limits accrued
/// @param limit pointer to the rate limit object
/// @param newBufferCap the new buffer cap to set
function setBufferCap(RateLimitMidPoint storage limit, uint112 newBufferCap) internal {
sync(limit);
uint256 oldBufferCap = limit.bufferCap;
limit.bufferCap = newBufferCap;
limit.midPoint = uint112(newBufferCap / 2);
/// if buffer stored is gt buffer cap, then we need set buffer stored to buffer cap
if (limit.bufferStored > newBufferCap) {
limit.bufferStored = newBufferCap;
}
emit BufferCapUpdate(oldBufferCap, newBufferCap);
}
}// SPDX-License-Identifier: MIT
// OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol)
pragma solidity ^0.8.20;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
/**
* @dev Muldiv operation overflow.
*/
error MathOverflowedMulDiv();
enum Rounding {
Floor, // Toward negative infinity
Ceil, // Toward positive infinity
Trunc, // Toward zero
Expand // Away from zero
}
/**
* @dev Returns the addition of two unsigned integers, with an overflow flag.
*/
function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
uint256 c = a + b;
if (c < a) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the subtraction of two unsigned integers, with an overflow flag.
*/
function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b > a) return (false, 0);
return (true, a - b);
}
}
/**
* @dev Returns the multiplication of two unsigned integers, with an overflow flag.
*/
function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
// Gas optimization: this is cheaper than requiring 'a' not being zero, but the
// benefit is lost if 'b' is also tested.
// See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522
if (a == 0) return (true, 0);
uint256 c = a * b;
if (c / a != b) return (false, 0);
return (true, c);
}
}
/**
* @dev Returns the division of two unsigned integers, with a division by zero flag.
*/
function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a / b);
}
}
/**
* @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.
*/
function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {
unchecked {
if (b == 0) return (false, 0);
return (true, a % b);
}
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds towards infinity instead
* of rounding towards zero.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
if (b == 0) {
// Guarantee the same behavior as in a regular Solidity division.
return a / b;
}
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or
* denominator == 0.
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by
* Uniswap Labs also under MIT license.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0 = x * y; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
// Solidity will revert if denominator == 0, unlike the div opcode on its own.
// The surrounding unchecked block does not change this fact.
// See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic.
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
if (denominator <= prod1) {
revert MathOverflowedMulDiv();
}
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator.
// Always >= 1. See https://cs.stackexchange.com/q/138556/92363.
uint256 twos = denominator & (0 - denominator);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also
// works in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded
* towards zero.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = sqrt(a);
return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log2(value);
return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10 of a positive value rounded towards zero.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10 ** 64) {
value /= 10 ** 64;
result += 64;
}
if (value >= 10 ** 32) {
value /= 10 ** 32;
result += 32;
}
if (value >= 10 ** 16) {
value /= 10 ** 16;
result += 16;
}
if (value >= 10 ** 8) {
value /= 10 ** 8;
result += 8;
}
if (value >= 10 ** 4) {
value /= 10 ** 4;
result += 4;
}
if (value >= 10 ** 2) {
value /= 10 ** 2;
result += 2;
}
if (value >= 10 ** 1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log10(value);
return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256 of a positive value rounded towards zero.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 256, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {
unchecked {
uint256 result = log256(value);
return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0);
}
}
/**
* @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers.
*/
function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) {
return uint8(rounding) % 2 == 1;
}
}{
"remappings": [
"@openzeppelin5/contracts/=lib/openzeppelin-contracts/contracts/",
"ds-test/=lib/openzeppelin-contracts/lib/forge-std/lib/ds-test/src/",
"erc4626-tests/=lib/openzeppelin-contracts/lib/erc4626-tests/",
"forge-std/src/=lib/forge-std/src/",
"openzeppelin-contracts/=lib/openzeppelin-contracts/",
"createX/=lib/createX/src/",
"@nomad-xyz/=lib/ExcessivelySafeCall/",
"@hyperlane/=node_modules/@hyperlane-xyz/",
"@openzeppelin/contracts/=node_modules/@openzeppelin/contracts/",
"@openzeppelin/contracts-upgradeable/=node_modules/@openzeppelin/contracts-upgradeable/",
"ExcessivelySafeCall/=lib/ExcessivelySafeCall/src/",
"openzeppelin/=lib/createX/lib/openzeppelin-contracts/contracts/",
"solady/=lib/createX/lib/solady/"
],
"optimizer": {
"enabled": true,
"runs": 200
},
"metadata": {
"useLiteralContent": false,
"bytecodeHash": "ipfs",
"appendCBOR": true
},
"outputSelection": {
"*": {
"*": [
"evm.bytecode",
"evm.deployedBytecode",
"devdoc",
"userdoc",
"metadata",
"abi"
]
}
},
"evmVersion": "cancun",
"viaIR": false,
"libraries": {}
}Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldBufferCap","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newBufferCap","type":"uint256"}],"name":"BufferCapUpdate","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"oldRateLimitPerSecond","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"newRateLimitPerSecond","type":"uint256"}],"name":"RateLimitPerSecondUpdate","type":"event"}]Contract Creation Code
61027d610034600b8282823980515f1a607314602857634e487b7160e01b5f525f60045260245ffd5b305f52607381538281f3fe7300000000000000000000000000000000000000003014608060405260043610610034575f3560e01c80637099757a14610038575b5f5ffd5b61004b6100463660046101df565b61005d565b60405190815260200160405180910390f35b600181015481545f9163ffffffff9081164203169082906100919083906fffffffffffffffffffffffffffffffff1661020a565b60018501549091506001600160701b03600160901b82048116600160201b9092041610156100ff5760018401546100f7906100dd908390600160201b90046001600160701b0316610221565b6001860154600160901b90046001600160701b03166101c6565b949350505050565b60018401546001600160701b03600160901b82048116600160201b9092041611156101ac576001840154600160201b90046001600160701b031681118061016d575060018401546001600160701b03600160901b820481169161016b918491600160201b900416610234565b105b1561018c5750505060010154600160901b90046001600160701b031690565b60018401546100f7908290600160201b90046001600160701b0316610234565b50505060010154600160201b90046001600160701b031690565b5f8183106101d457816101d6565b825b90505b92915050565b5f602082840312156101ef575f5ffd5b5035919050565b634e487b7160e01b5f52601160045260245ffd5b80820281158282048414176101d9576101d96101f6565b808201808211156101d9576101d96101f6565b818103818111156101d9576101d96101f656fea2646970667358221220e1095a50cbf9b45925f3394a558ca5c68290bb78dc17ec499c30fdbe45a4283f64736f6c634300081b0033
Deployed Bytecode
0x7350f6f01b1804eaf2e53830a5a6890b70fe45937e3014608060405260043610610034575f3560e01c80637099757a14610038575b5f5ffd5b61004b6100463660046101df565b61005d565b60405190815260200160405180910390f35b600181015481545f9163ffffffff9081164203169082906100919083906fffffffffffffffffffffffffffffffff1661020a565b60018501549091506001600160701b03600160901b82048116600160201b9092041610156100ff5760018401546100f7906100dd908390600160201b90046001600160701b0316610221565b6001860154600160901b90046001600160701b03166101c6565b949350505050565b60018401546001600160701b03600160901b82048116600160201b9092041611156101ac576001840154600160201b90046001600160701b031681118061016d575060018401546001600160701b03600160901b820481169161016b918491600160201b900416610234565b105b1561018c5750505060010154600160901b90046001600160701b031690565b60018401546100f7908290600160201b90046001600160701b0316610234565b50505060010154600160201b90046001600160701b031690565b5f8183106101d457816101d6565b825b90505b92915050565b5f602082840312156101ef575f5ffd5b5035919050565b634e487b7160e01b5f52601160045260245ffd5b80820281158282048414176101d9576101d96101f6565b808201808211156101d9576101d96101f6565b818103818111156101d9576101d96101f656fea2646970667358221220e1095a50cbf9b45925f3394a558ca5c68290bb78dc17ec499c30fdbe45a4283f64736f6c634300081b0033
Loading...
Loading
Loading...
Loading
Loading...
Loading
Net Worth in USD
$0.00
Net Worth in ETH
0
Multichain Portfolio | 35 Chains
| Chain | Token | Portfolio % | Price | Amount | Value |
|---|
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.